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Abstract

In 2007 Jedwab and Parker proposed [10] that the natural viewpoint for a Golay comple-
mentary sequence is as a projection of a multi-dimensional Golay array. In 2008 Fiedler, Jedwab
and Parker [5] used this viewpoint to show how to construct and enumerate all known 2h-phase
Golay sequences of length 2m, starting from two sources of Golay seed pairs. The first source of
seed pairs is the trivial Golay pair of length 1, which gives rise to “standard” Golay sequences;
the second source is the set of 512 non-standard “cross-over” 4-phase Golay pairs of length 8,
which give rise to non-standard 4-phase Golay sequences of length 2m for each m ≥ 4. Begin-
ning with a single length 5 complex-valued Golay sequence pair, we show how to construct a
third source of Golay seed pairs (and only the second known non-trivial source), namely a new
set of 5184 non-standard 6-phase Golay sequences of length 16 that form 62208 non-standard
ordered Golay pairs. Using the multi-dimensional viewpoint, this new set of Golay seed pairs in
turn gives rise to a new infinite family of 6-phase non-standard Golay sequences of length 2m for
each m ≥ 4, and a new infinite family of 12-phase non-standard Golay sequences of length 2m

for each m ≥ 8. All currently known H-phase Golay sequences of length 2m can be constructed
from the three sets of seed pairs.

Keywords 6-phase, complementary, construction, Golay sequence, non-standard, seed pair

1 Introduction

Golay complementary sequence pairs have found application in many areas of digital information
processing since their introduction by Golay [6] in 1951, including infrared multislit spectrome-
try [6], optical time domain reflectometry [12], power control for multicarrier wireless transmis-
sion [1], and medical ultrasound [13] (see [9], for example, for a general discussion). The central
theoretical questions are: for what lengths does a Golay sequence pair exist, and how many distinct
Golay sequences and Golay sequence pairs of a given length are there?

In 1999 Davis and Jedwab [1] gave an explicit algebraic normal form for a set of H-phase Golay
sequence pairs of length 2m in the case H = 2h, demonstrating an unexpected connection with
Reed-Muller codes; the same construction holds without modification for any even H 6= 2h [14].
In 2008 Fiedler, Jedwab and Parker [5] showed that all these “standard” Golay sequences can be
recovered from a three-stage multi-dimensional construction process, using trivial Golay pairs of
length 1 as inputs.

Until now, the only known non-standard H-phase Golay sequences of length 2m were those
arising when one or more “cross-over” 4-phase Golay pairs of length 8 [3] are used as inputs to
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the three-stage construction process [5]. In particular, this includes the 1024 non-standard 4-phase
Golay sequences of length 16 found in 2005 by Li and Chu [11], that motivated [3] and subsequent
work. It is then natural to ask whether there are any further sources of H-phase Golay seed pairs
of length 2m, that can be used as inputs to the three-stage construction process of [5] in order to
construct new infinite families of Golay sequences.

The smallest length 2m for which an exhaustive search of 4-phase Golay sequences has not been
conducted is 32 [4, Table 1], but it appears that such a search remains out of computational reach
using current search algorithms. However we discovered by exhaustive search that there are exactly
5184 non-standard 6-phase Golay sequences of length 16 that form 62208 non-standard ordered
Golay pairs. Since there are no cross-over 6-phase Golay sequence pairs of length 8, we cannot
explain the origin of these new sequences by similar methods to those of [3]; instead, an entirely
different explanation is required. We give a preliminary classification of the 5184 sequences into
two classes, each having the same “template”. We then describe how the template led us to the
desired complete explanation of the origin of the 5184 sequences, depending on the existence of
only a single length 5 complex-valued Golay sequence pair. We outline the infinite families of Golay
sequences that arise by using one or more of the newly discovered non-standard sequence pairs as
inputs to the three-stage construction process. Finally, we compare our construction method for
6-phase Golay sequence pairs with a construction for binary Golay sequence pairs given in 1991 by
Eliahou, Kervaire and Saffari [2].

2 Definitions and notation

We define a length s sequence to be a 1-dimensional matrix A = (Ai) of complex-valued entries,
where i is integer, for which

Ai = 0 if i < 0 or i ≥ s.

Call the set of sequence elements
{Ai | 0 ≤ i < s}

the in-range entries of A.
Usually the in-range entries of A are constrained to lie in a small finite set S called the sequence

alphabet. Let ξ be a primitive H-th root of unity for some H, where H represents an even integer
throughout. If S = {1, ξ, ξ2, . . . , ξH−1} then A is an H-phase sequence. Special cases of interest
are the binary case H = 2, for which S = {1,−1}, and the quaternary case H = 4, for which
S = {1,

√
−1,−1,−

√
−1}. If S = ZH then A is a sequence over ZH . The in-range entries of an

H-phase sequence A = (Ai) of length s can be represented in the form

ξai := Ai, where each ai ∈ ZH . (1)

We say that the length s sequence (ai) given by (1) is the sequence over ZH corresponding to A.
(Here and elsewhere, in defining the elements of a sequence of a given length, the definition implic-
itly applies only to the in-range entries.) We will consistently use lower-case letters for sequences
over ZH (“additive notation”), and upper-case letters for complex-valued sequences (“multiplicative
notation”). We will switch between multiplicative and additive notation, according to convenience.
If an H-phase alphabet is enlarged to allow zero elements, so that S = {0, 1, ξ, ξ2, . . . , ξH−1}, then
we call A an H(0)-phase sequence. The ternary case H = 2, for which S = {0, 1,−1}, has been
particularly studied.

The aperiodic autocorrelation function of a length s complex-valued sequence A = (Ai) is given
by

CA(u) :=
∑
i

AiAi+u for integer u,
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where bar represents complex conjugation. The aperiodic autocorrelation function of a sequence
over ZH is that of the corresponding H-phase sequence. A length s Golay sequence pair is a pair
of length s sequences A and B for which

CA(u) + CB(u) = 0 for all u 6= 0.

A sequence A is called a Golay sequence if it forms a Golay sequence pair with some sequence B.
The algebraic normal form of a sequence (ai) of length 2m over ZH is the unique function

a′(i1, . . . , im) : Zm2 → ZH satisfying

a′(i1, . . . , im) = aim+2im−1+···+2m−1i1 for all (i1, . . . , im) ∈ Zm2 .

We can explicitly represent a large class of Golay sequences of length 2m using algebraic normal
form:

Theorem 1. Let m ≥ 1 be integer and let e′0, e0, e1, . . . , em ∈ ZH . For any permutation π of
{1, . . . ,m}, the sequences of length 2m over ZH having algebraic normal form

a(x1, . . . , xm) :=
H

2

m−1∑
k=1

xπ(k)xπ(k+1) +
m∑
k=1

ekxπ(k) + e0,

b(x1, . . . , xm) :=
H

2

m−1∑
k=1

xπ(k)xπ(k+1) +
m∑
k=1

ekxπ(k) + e′0 +
H

2
xπ(1)

 (2)

form a Golay sequence pair. As e′0, e0, e1, . . . , em and π range over all their possible values, the
number of Golay sequences of length 2m over ZH of this form is{

Hm+1m!/2 for m > 1

H2 for m = 1,

and the corresponding number of ordered Golay sequence pairs is at least Hm+2m!

The case H = 2h of Theorem 1 was given by Davis and Jedwab [1, Theorem 3], and Paterson [14]
showed that the case H 6= 2h holds without modification to the construction in [1]. The Golay
sequence pairs of Theorem 1 are called standard. The standard Golay sequences belong to a
generalisation over ZH of the binary Reed-Muller code [1].

Given a complex-valued length s sequence A = (Ai) and complex constant C, define A∗ to be
the length s sequence (As−1−i) (with corresponding sequence (−as−1−i) over ZH if A is H-phase),
and CA to be the length s sequence (CAi). The following result is a straightforward consequence
of the definitions:

Lemma 2. Let A be a complex-valued sequence of length s and let C be a complex constant of
modulus 1. Then the sequences A, CA, and A∗ have identical aperiodic autocorrelation function.

Given an H-phase sequence A and a primitive H-th root of unity ξ, it follows from Lemma 2 that
the elements of the set

E(A) := {ξcA | c ∈ ZH} ∪ {ξcA∗ | c ∈ ZH}

of H-phase sequences (which has order H if A∗ = ξcA for some c ∈ ZH , and order 2H otherwise)
all have identical aperiodic autocorrelation function.

If there are standard Golay sequence pairs (A,B) and (A′,B′) of the same length for which
E(A) 6= E(A′) and E(B) 6= E(B′) but A, A′ have identical aperiodic autocorrelation function,
then we can form cross-over Golay sequence pairs (A,B′) and (A′,B). The only known examples
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of cross-over Golay sequence pairs of length 2m over Z2h occur for m = 3 and h = 2, for example
the sequences [0, 0, 0, 2, 0, 0, 2, 0] and [0, 1, 1, 2, 0, 3, 3, 2] over Z4 [3]. All 512 ordered cross-over
Golay sequence pairs of length 8 over Z4 can be derived from this pair, and all previously known
non-standard Golay sequences of length 2m over ZH arise by using one or more of these cross-over
sequence pairs as inputs to the three-stage construction process of [5].

3 How do the new 6-phase Golay sequences arise?

By exhaustive search, the total number of 6-phase Golay sequences of length 16 is 98496, whereas
by Theorem 1 only 65 · 4!/2 = 93312 of these are standard; so there are 5184 non-standard 6-phase
Golay sequences of length 16. Each of these non-standard Golay sequences is found to form a Golay
pair with exactly 12 other non-standard Golay sequences, and with no standard Golay sequence.
In summary, we find by computer that:

Proposition 3. There are exactly 5184 non-standard 6-phase Golay sequences of length 16, and
the corresponding number of non-standard ordered Golay sequence pairs is exactly 62208.

For example (using additive notation), the sequences

[0, 0, 0, 0, 4, 2, 3, 4, 2, 0, 4, 2, 3, 0, 0, 3] and [0, 3, 0, 3, 1, 2, 0, 1, 2, 0, 1, 2, 3, 3, 0, 0]

form a Golay pair of length 16 over Z6. The non-standard Golay sequences of Proposition 3 do
not arise via cross-over, since direct checking shows there are no cross-over 6-phase Golay pairs of
length 8. How, then, do they arise?

We begin with a preliminary classification of the 5184 sequences into two classes, each following
the same “template”. This classification requires Lemmas 4 and 5, both of which describe the
transformation of a given Golay pair into one or more further Golay pairs. These transforma-
tion lemmas are slight modifications of known results, the only difference being that an H-phase
alphabet can be extended to an H(0)-phase alphabet. The first transformation concerns “offset
sequences” (that were called affine offsets using additive notation in [5]):

Lemma 4 (Fiedler and Jedwab [3, Corollary 2]). Let ξ be a primitive H-th root of unity, and
suppose that A = (Ai) and B = (Bi) form an H(0)-phase Golay sequence pair. Then the offset
sequences A′ = (ξei+e0Ai) and B′ = (ξei+e

′
0Bi) also form an H(0)-phase Golay sequence pair of the

same length, for all e, e0, e′0 ∈ ZH .

Proof. Clearly A′ and B′ are H(0)-phase sequences. We also have

CA′(u) + CB′(u) =
∑
i

ξei+e0Aiξe(i+u)+e0Ai+u +
∑
i

ξei+e
′
0Biξe(i+u)+e

′
0Bi+u

= ξ−eu

(∑
i

AiAi+u +
∑
i

BiBi+u

)
= ξ−eu(CA(u) + CB(u)),

which implies the result.

The second transformation concerns complex conjugation. Given a complex-valued sequence
A = (Ai), write A for the complex conjugated sequence (Ai) (with corresponding sequence (−ai)
over ZH if A is H-phase).
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Lemma 5 (Holzmann and Kharaghani [8]). Suppose that A and B form an H(0)-phase Golay
sequence pair. Then the complex conjugated sequences A and B also form an H(0)-phase Golay
sequence pair of the same length.

Proof. The result follows from the easily verified identity

CA(u) + CB(u) = CA(u) + CB(u).

We begin by reducing the non-standard 6-phase Golay sequences of length 16 to a more man-
ageable set, from which we can identify relationships among the sequences. By Lemma 4, we can
reduce the 5184 sequences to a set of size 5184/36 = 144, by choosing one representative (Ai)
from each set of 36 offset sequences {(ξei+e0Ai) | e, e0 ∈ Z6}. By Lemmas 2 and 5, we obtain a
further reduction to a set of 144/4 = 36 sequences, by choosing one representative A from each
set {A,A,A∗,A∗}. By examination of the aperiodic autocorrelation function of the resulting 36
sequences, and by careful adjustment of the choice of representatives, we were able to arrange 36
representative sequences into two classes of nine Golay pairs, each class displaying clear internal
structure. This structure is most easily described using additive notation to represent the Golay
sequences, writing A+B for the elementwise sum of the sequences A and B over Z6, and cA for the
elementwise product of A with the constant c ∈ Z6. Using this notation, the template of Figure 1
contains nine Golay pairs arranged in a 3 × 3 grid. The second and third rows are formed by
adding the sequence X to both sequences of the pairs of the preceding row, and the second and
third columns are formed by adding the sequence Y to both sequences of the pairs of the preceding
column. The set of 18 sequences contained in the template is

{W + c1X + c2Y | c1 ∈ Z6, c2 ∈ {0, 1, 2}}, (3)

each of which is a representative of 4 · 36 = 144 Golay sequences. The two possible values of
(W,X ,Y) shown in Figure 1, generating sequence classes 1 and 2, then account for all 2 ·18 ·144 =
5184 Golay sequences. (For both classes, taking c2 ∈ {3, 4, 5} in (3) does not generate any Golay
sequences beyond those already described.)

{W, W + 3X} {W + Y, W + Y + 3X} {W + 2Y, W + 2Y + 3X}
{W + X , W + 4X} {W + Y + X , W + Y + 4X} {W + 2Y + X , W + 2Y + 4X}
{W + 2X , W + 5X} {W + Y + 2X , W + Y + 5X} {W + 2Y + 2X , W + 2Y + 5X}

Class 1: Class 2:
W =[0, 0, 0, 0, 4, 2, 3, 4, 2, 0, 4, 2, 3, 0, 0, 3] W =[0, 2, 2, 2, 0, 0, 0, 3, 0, 3, 3, 0, 4, 4, 4, 0]
X =[0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1] X =[0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1]
Y =[0, 2, 0, 2, 3, 1, 3, 4, 2, 3, 5, 3, 4, 0, 4, 0] Y =[0, 1, 2, 3, 4, 0, 2, 3, 3, 4, 0, 2, 3, 4, 5, 0]

Figure 1: Template for the 5184 non-standard Golay sequences of length 16 over Z6, and sequence
values for Classes 1 and 2

The template indicates that there is striking structure among the 5184 sequences, but does not
provide a complete explanation for their origin. For both classes 1 and 2, it is not obvious why
{W,W + 3X} forms a Golay pair. Furthermore, although we can explain from [3, Lemma 3] why
repeated addition of X to both sequences of the pair {W,W + 3X} yields another Golay pair, it
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is not clear why the same holds for addition of Y. However the additive structure of the template
strongly suggests that offset sequences play a key role in explaining the origin of the 5184 non-
standard Golay sequences. The missing ingredient is the following construction for complex-valued
Golay sequences over an arbitrary alphabet, for which we now revert to multiplicative notation.
We write A± B for the elementwise sum or difference of the complex-valued sequences A and B.

Lemma 6. Suppose that A and B form a complex-valued Golay sequence pair. Then A + B and
A− B also form a Golay sequence pair of the same length.

Proof. The result follows from the easily verified identity

CA+B(u) + CA−B(u) = 2(CA(u) + CB(u)).

In general, the alphabet of the constructed sequences A + B and A − B in Lemma 6 will not be
the same as that of A and B. However, we can control the alphabet of the output sequences under
two successive applications of Lemma 6, by careful choice of the input sequences.

Let ξ = exp(2π
√
−1/6) be a primitive sixth root of unity. It is easy to check that the sequences

F = (Fi) := [1, ξ2, ξ2, ξ2, 1] and G = (Gi) := [1, 0, 0, 1,−1]

form a 6(0)-phase Golay sequence pair of length 5. We now construct all 5184 non-standard 6-phase
Golay sequences of length 16 from the pair (F ,G). For any fixed e, e0, e

′
0 in Z6, by Lemma 4

A = (Ai) := (ξei+e0Fi) and B = (Bi) := (ξei+e
′
0Gi) (4)

form a 6(0)-phase Golay pair of length 5. Clearly, we can pad the sequences A and B with zeroes to
form the 6(0)-phase Golay pair (A1,B1) of length 16 shown in Figure 2 (noting that B1 = B2 = 0
by definition of G). Now by Lemma 6,

A2 := A1 + B1 and B2 := A1 − B1 (5)

then form a Golay pair of length 16, and this pair is also 6(0)-phase because the support of A1

(namely the values of i for which element i of A1 is nonzero) is disjoint from that of B1. By
Lemma 2, A2 therefore forms a 6(0)-phase Golay pair with CB∗2, where C = ξc for any fixed c ∈ Z6.
Moreover the indices {0, 1, . . . , 15} are the disjoint union of the support of A2 and CB∗2; in other
words (as a consequence of the positions of the zero elements of G), the sequences A2 and CB∗2
“fit together” perfectly, with the positions for which each is nonzero coinciding exactly with the
positions for which the other is zero. So, using Lemma 6 again, we find that the length 16 Golay
pair

A3 := A2 + CB∗2 and B3 := A2 − CB∗2 (6)

is 6-phase. The number of distinct non-standard 6-phase Golay sequences of length 16 having the
form of A3 is 64, since each of e, e0, e′0, c can take any value in Z6. (We cannot increase this number
by considering sequences of the form B3, since each B3 transforms to its pair A3 under the mapping
c 7→ c+ 3.)

We next examine how these 64 sequences form Golay pairs. From Section 2, we know that A3

forms a Golay pair with each of the sequences in the set

E(B3) := {ξdB3 | d ∈ Z6} ∪ {ξdB∗3 | d ∈ Z6}, (7)
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A1 = [ 0 0 A0 0 0 A1 0 0 A2 0 0 A3 0 0 A4 0 ]
B1 = [ B0 0 0 0 0 0 0 0 0 B3 0 0 B4 0 0 0 ]

A2 = [ B0 0 A0 0 0 A1 0 0 A2 B3 0 A3 B4 0 A4 0 ]
B2 = [−B0 0 A0 0 0 A1 0 0 A2 −B3 0 A3 −B4 0 A4 0 ]

A3 = [ B0 CA4 A0 −CB4 CA3 A1 −CB3 CA2 A2 B3 CA1 A3 B4 CA0 A4 −CB0 ]
B3 = [ B0 −CA4 A0 CB4 −CA3 A1 CB3 −CA2 A2 B3 −CA1 A3 B4 −CA0 A4 CB0 ]

Figure 2: Iterative construction of Class 1 Golay sequences

and this set has order 2 · 6 = 12 since (by inspection of B3) we have B∗3 6= ξdB3 for any d ∈ Z6. In
fact, each of the 12 sequences in the set (7) occurs as one of the 64 sequences already constructed:
for each d ∈ Z6, the sequence B3 transforms to ξdB3 under the mapping

e0 7→ e0 + d, e′0 7→ e′0 + d, c 7→ 2d+ c; (8)

and transforms to ξdB∗3 under the mapping

e0 7→ e0 + 3 + d− c, e′0 7→ e′0 + d− c, c 7→ 2d− c. (9)

Furthermore, by Lemma 2 we can replace F throughout by F∗ = [1, ξ4, ξ4, ξ4, 1] to obtain
another 64 non-standard Golay sequences, each of which forms a Golay pair with 12 others from
this second set of 64 sequences. We have thereby accounted for a total of 2 · 64 = 2592 of the
Golay sequences of Proposition 3, and shown that each forms a Golay pair with at least (and, by
computer search, exactly) 12 other Golay sequences from Proposition 3.

(These 2592 sequences are exactly the Class 1 sequences of Figure 1, and we can determine the
values of X and Y from the constructed forms for A3 and B3. In particular, the componentwise
difference between the sequences of each Golay pair of the template is 3X ; for the Class 1 sequences
this corresponds to the 6-phase sequence [1,−1, 1,−1,−1, 1,−1,−1, 1, 1,−1, 1, 1,−1, 1,−1], which
is the componentwise quotient of B3 and A3. The mapping c 7→ c + 1 corresponds to the trans-
formation that adds the sequence X to both sequences of a Golay pair of the template, and the
mapping e 7→ e+ 1 likewise corresponds via (4) to addition of the sequence Y.)

The Class 2 sequences arise from a modification of the construction of Figure 2, as shown in
Figure 3. The sequences A and B, as defined in (4), can be padded with zeroes to form the 6(0)-
phase Golay pair (A1,B1) of length 16 shown in Figure 3. The construction of the Golay pairs
(A2,B2) and (A3,B3) then follows (5) and (6), as before. F can again be replaced by F∗, and the
same mappings (8) and (9) apply. This accounts for the remaining 2 ·64 = 2592 Golay sequences of
Proposition 3 and their pairings. The value of X and Y can be determined from the same mapping
of c and e as previously.

A1 = [A0 A1 A2 A3 A4 0 0 0 0 0 0 0 0 0 0 0 ]
B1 = [ 0 0 0 0 0 B0 0 0 B3 B4 0 0 0 0 0 0 ]

A2 = [A0 A1 A2 A3 A4 B0 0 0 B3 B4 0 0 0 0 0 0 ]
B2 = [A0 A1 A2 A3 A4 −B0 0 0 −B3 −B4 0 0 0 0 0 0 ]

A3 = [A0 A1 A2 A3 A4 B0 −CB4 −CB3 B3 B4 −CB0 CA4 CA3 CA2 CA1 CA0 ]
B3 = [A0 A1 A2 A3 A4 B0 CB4 CB3 B3 B4 CB0 −CA4 −CA3 −CA2 −CA1 −CA0 ]

Figure 3: Iterative construction of Class 2 Golay sequences
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4 Two new infinite families of non-standard Golay sequences

The three-stage construction process of [5] explicitly constructs a multi-dimensional H-phase Go-
lay array pair from multiple input H-phase Golay sequence (or array) pairs, and then produces
numerous H-phase Golay sequence pairs by taking affine offsets and “projecting” to lower dimen-
sions. By taking one or more of the input Golay array pairs to be from Proposition 3 and all other
input pairs to be trivial, we obtain a new infinite family of non-standard 6-phase Golay sequences
of length 2m for each m ≥ 4.

We can also regard both the 512 ordered cross-over 4-phase Golay pairs of length 8 and the
62208 ordered Golay pairs of Proposition 3 as 12-phase sequences, and use at least one pair of each
type as inputs to the three-stage construction process. This produces a further new infinite family
of non-standard 12-phase Golay sequences of length 2m for each m ≥ 8.

5 Comparison with an iterative binary construction

Beginning with a suitable H(0)-phase Golay pair (A1,B1) of length s, the construction method
illustrated in Figures 2 and 3 produces H-phase Golay sequence pairs A3 := (αi) and B3 := (βi)
(with H = 6 and s = 16), whose elements satisfy

βi = Diαi for all i, where each Di ∈ {1,−1} and Di = −Ds−1−i (10)

and
αs−1−i = D′iCαi for all i, where each D′i ∈ {1,−1} and C ∈ {1, ξ, ξ2, . . . , ξH−1}. (11)

Given any H-phase Golay sequence pair A3 := (αi) and B3 := (βi) of length s satisfying (10)
and (11), it is straightforward to show that the construction can be reversed: the sequence pair
(A1,B1) that is then defined by (5) and (6), which forms a Golay pair by Lemmas 2 and 6, is
H(0)-phase.

Now for a standard H-phase Golay sequence pair (A3,B3) of length 2m, it can be shown from (2)
that conditions (10) and (11) hold for (αi) = A3 and (βi) = C ′B3 for some C ′ ∈ {1, ξ, ξ2, . . . , ξH−1}.
The same is not necessarily true for a non-standard H-phase Golay sequence pair (A3,B3) of
length 2m: for example, consider the cross-over Golay sequence pair A3 = [0, 0, 0, 2, 0, 0, 2, 0] and
B3 = [0, 1, 1, 2, 0, 3, 3, 2] over Z4. However, in the case of a binary Golay sequence pair A3 := (αi)
and B3 := (βi) of length s, Golay [7] established that

αiβi = −αs−1−iβs−1−i for all i,

which implies that conditions (10) and (11) always hold in the binary case (with C = 1), whether
or not the pair is standard and whether or not it has length 2m. Therefore we can explain the
existence of any binary Golay sequence pair (A3,B3) by means of the ternary Golay sequence
pair (A1,B1) defined from (5) and (6) with C = 1, as noted previously by Eliahou, Kervaire and
Saffari [2]. For example, following the derivation of [2, p. 249], we now explain the existence of all
32 binary Golay sequences of length 10 as depending on the single length 3 ternary Golay sequence
pair

F = (Fi) := [1, 1,−1] and G = (Gi) := [1, 0, 1].

By Lemma 4, the sequences

A = (Ai) := ((−1)ei+e0Fi) and B = (Bi) := ((−1)ei+e
′
0Gi) (12)
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form a ternary Golay sequence pair for any fixed e, e0, e
′
0 in Z2. We pad the sequences A and B

with zeroes as shown in Figures 4 and 5 to form a ternary Golay pair (A1,B1) of length 10, and
then set

A2 := A1 + B1 and B2 := A1 − B1,

A3 := A2 + B∗2 and B3 := A2 − B∗2.

This accounts for all 32 binary Golay sequences of length 10, by taking the sequences A3 and B3

from Figures 4 and 5 for all 23 values of e, e0, e′0.

A1 = [ 0 A0 0 0 A1 0 0 A2 0 0 ]
B1 = [ B0 0 0 0 0 0 B2 0 0 0 ]

A2 = [ B0 A0 0 0 A1 0 B2 A2 0 0 ]
B2 = [−B0 A0 0 0 A1 0 −B2 A2 0 0 ]

A3 = [ B0 A0 A2 −B2 A1 A1 B2 A2 A0 −B0 ]
B3 = [ B0 A0 −A2 B2 A1 −A1 B2 A2 −A0 B0 ]

Figure 4: First iterative construction of length 10 binary Golay sequences

A1 = [A0 A1 A2 0 0 0 0 0 0 0 ]
B1 = [ 0 0 0 B0 0 B2 0 0 0 0 ]

A2 = [A0 A1 A2 B0 0 B2 0 0 0 0 ]
B2 = [A0 A1 A2 −B0 0 −B2 0 0 0 0 ]

A3 = [A0 A1 A2 B0 −B2 B2 −B0 A2 A1 A0 ]
B3 = [A0 A1 A2 B0 B2 B2 B0 −A2 −A1 −A0 ]

Figure 5: Second iterative construction of length 10 binary Golay sequences

6 Conclusions

By computer search, we have discovered a set of 5184 non-standard 6-phase Golay sequence pairs
of length 16 that do not arise by cross-over. We have shown how to construct these sequences from
a single complex-valued Golay sequence pair of length 5. By using one or more of the new Golay
sequence pairs in the construction process of [5], we obtain two new infinite families of non-standard
Golay sequences of length 2m. All currently known H-phase Golay sequences of length 2m can be
constructed from three sets of seed pairs: the new set given in Proposition 3, the cross-over 4-phase
pairs of length 8, and a trivial pair of length 1.

The construction method for H-phase Golay sequence pairs that we have described is new for
H > 2. It relies both on the position of the zero elements of the initial pair (F ,G), and on the values
of the non-zero elements. Can further examples of new H-phase Golay sequences of length 2m be
produced by this method?
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